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1. 

The problem of the vibration of thin, shallow shells has received considerable attention
since such components are often to be found in engineering applications where dynamic
excitation exists. Much of this work has been discussed in the excellent review articles by
Leissa [1] and Qatu [2]. The effects of various characteristics of the shell, such as degree and
nature of curvature and type of support conditions, have been examined by numerous
researchers. However, a topic which has so far been almost neglected is the effect of the
presence of a slit on a vibration of a shallow shell. This topic is of some practical importance
as a slit can be considered as a first approximation to an open crack, which can indeed occur
in practice. It may be noted that although a slit may be a relatively poor representation of
a crack for the prediction of quantities such as stresses in the vicinity of the crack tip, it is
a reasonable approximation for studies of more global characteristics such as natural
frequencies and mode shapes of vibration. Some work that has been reported on the
vibration of shallow shells with slits is that by Young and Dickinson [3, 4], in which natural
frequencies are given for annular and circular spherical shells with radial slits, and that by
Crossland, Young and Dickinson [5], which is a brief (two-page abstract) and preliminary
report on the approach described here. The work described in references [3] and [4] was part
of a more general study on the vibration of shallow shells with various different planforms
[4, 6], and was approached by using a Ritz solution with one to four general sectorial
elements being joined together through the use of artificial springs of very high stiffness. To
the author’s knowledge, no other researchers have treated the slit shell problem.

In the present work, uniform thickness, unstressed, shallow shells of rectangular
planform, with slits parallel to one edge, are considered. Each shell is subdivided into
several ‘‘free’’ rectangular shell elements which are joined together and to the boundaries
by means of very stiff, artificial, line springs, thereby enforcing the continuity and
boundary conditions. Slits are created by allowing the appropriate springs to have a
stiffness of zero. The resulting slit can be termed ‘‘open’’ and does not interfere with the
motion of the shell material in any of the three Cartesian directions. Natural frequency
parameters are presented for a variety of problems and the effect of such variables as
boundary conditions, curvature conditions, slit length and slit location are illustrated.

2.  

Consider the typical, rectangular planform, isotropic, thin, shallow shell shown in
Figure 1, the corners of which lie in an x–y plane at (x, y)= (0, 0), (a, 0), (0, b) and (a, b).
The principal radii of curvature Rx and Ry are assumed to be constant and their axes
coincide with the x- and y-axes; hence 1/Rxy =0. A slit of length c, approximating an open
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Figure 1. A shallow shell with an interior slit.

crack, lies parallel to the x-axis. It is further assumed that the middle surface of the shell
is unstressed in the static equilibrium position. Since the shell is shallow, the displacements
and energy expressions for both the entire shell and each element may be written in terms
of the Cartesian co-ordinates associated with the projection of the shell on to the x–y plane.
In this case, the shell may be idealized as composed of six rectangular planform, shallow
shell elements, as indicated; for different locations of the slit, it may be desirable to use
more or fewer elements. In using the artificial spring approach [7], each element is initially
treated as completely free and is subsequently connected to adjacent elements and/or to
the boundaries by means of line springs of very high stiffness. It is necessary to use up
to four line springs for each connection, these being the three translational springs of
stiffness Ku , Kv and Kw , and one rotational spring of stiffness R. Where a slit or a free
boundary exists, the stiffness of any connecting spring is simply set to zero, effectively
giving no connection. Similarly, if only partial support exists at a boundary, such as for
a shear diaphragm support, then the stiffness of the appropriate spring(s) is (are) set to
zero. In the event that elastic supports or inter-element connections are required, then the
spring stiffnesses are adjusted to the appropriate finite values, modelling the actual
connection.

The displacements of the middle surface are defined as u, v and w in the x, y and z
directions, respectively, and, for free, small amplitude vibration, the motion may be
described by u=U(x, y) sin vt, v=V(x, y) sin vt and w=W(x, y) sin vt. The quantities
U, V and W for each element are chosen to satisfy the geometrical free boundary conditions
along the element edges and, in this work, simple polynomials are used. These are written

U(x, y)=s s Aijxiy j, V(x, y)= s s Bijxiy j and W(x, y)= s s Cijxiy j,

where i, j=0, 1, 2, . . . , and the origin for the elemental x and y is at the corner of the
element closest to the origin of the global co-ordinates.

The maximum energies, with respect to time, may now be written for each element using
the standard expressions [8]. Further strain energy terms result from the inclusion of the
artificial springs. For example, for the connection between two elements A and B, joined
along an x=constant edge, the additional strain energy terms may be written

UUAB = 1
2KUAB g [UA (aA , y)−UB (0, y)]2 dy, (1)

UVAB = 1
2KVAB g [VA (aA , y)−VB (0, y)]2 dy, (2)



    515

UWAB = 1
2KWAB g [WA (aA , y)−WB (0, y)]2 dy, (3)

URAB = 1
2RAB g $dWA

dx bx= aA

−
dWB

dx bx=0%
2

dy, (4)

where the integrals are carried out over y=0 to y= bA and the side lengths of element
A are aA and bA . The boundary conditions may also be accomodated by using similar
expressions simply by setting the appropriate displacement or normal slope values to zero,
in the event that rigid support is offered in a particular direction, or by setting the
appropriate stiffness value to zero, if the edge is free to move in a particular direction.
The energy contributions from all elements and artificial springs are then summed over
the whole system and the Lagrangian formed and optimized with respect to the
displacement coefficients Amn to yield an eigenvalue equation of the standard form.

It should be noted that different numbers of terms could be used in the displacement
functions for each element in both the x and y directions and for each of U, V and W
but, in this work, all series were taken from 0 to n. As a result, a six-element shell structure
has 18(n+1)2 degrees of freedom in the entire system.

3.  

Throughout this section, the following non-dimensional stiffness parameters are used:
for translational line springs, Ka3/D, and for rotational line springs, Ra/D, where D is the
flexural rigidity of the shell, given by Eh3/(12(1− n2)), in which E is Young’s modulus of
elasticity, h is the shell thickness and n is the Poisson ratio. Furthermore, all spring stiffness
parameters for a particular shell are given the same numerical value k and the frequency
parameter reported is V=va2(rh/D)1/2, where r is the material density. In addition, the
slit is always assumed to lie parallel to the x-axis.

In order to engender confidence in the analysis and to establish a satisfactory value of
the parameter k, studies examining the convergence of the frequency parameters were
conducted and comparisons made with results available from elsewhere. These results are
not tabulated here, but a brief description of their interpretation follows. The first two
systems considered were shells with no slits, these being the cantilevered cylindrical shell
treated by Lim, Liew and Ong [9], who used a single domain, two-dimensional polynomial
of fifteenth degree, Ritz solution, and the spherically curved, shear diaphragm supported
shell treated by Leissa and Kadi [10], who presented an exact solution. It was found that
there was no change in the fifth significant figure of the frequency parameters for the first
few modes of either system when using k=1011 or k=1013. The agreement with the
previously published results was excellent. Two problems involving slits were then treated:
a fully clamped, rectangular flat plate with a centrally located slit, previously investigated
experimentally by Maruyama and Ichinomiya [11] and theoretically by Yuan and
Dickinson, using the analysis given in reference [7]; and a fully free, square, spherical shell
with a slit that started at one edge and extended along a centreline. The theoretical results
used for both comparisons were obtained using similar analyses to that described
here—although each was formulated differently—and, as would be expected, the
agreement achieved was excellent. It was observed that the rate of convergence with
increased number of terms in the displacement series decreased in the presence of a slit,
as may be seen in the results that follow.
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For the slit shell, the number of parameters and degree to which each may be varied
is enormous and renders a comprehensive parametric study impractical. As a consequence,
only a brief parametric study is given here. A somewhat more comprehensive parametric
study, including the depiction of mode shapes for some cases, may be found in the work
by Crossland [12]. In all cases discussed, the following parameters were used for each shell:
k=1013, a/b=1 and a/h=200. Two descriptive quantities are introduced to aid in the
discussion and the presentation of the results. The ‘‘convergence index’’, abbreviated to
C.I. in the tables, is defined as the percentage difference between the n=5 and n=7 term
solutions (based on the n=7 solution) for a particular case. While this does not indicate
that the solution has converged to within that percentage of the true solution, it does give
some indication of the degree to which convergence has occurred. The ‘‘percentage
reduction’’ (P.R. in the tables) is the percentage reduction which is observed between the
natural frequency for the slit shell and that of the equivalent shell with no slit, based upon
the natural frequency of the shell with no slit. In all but one of the tables presented, the
mode type is described by means of S and A, the first indicating symmetry or antisymmetry
about the central x-axis and the second about the y-axis. For these cases, numerical results
for the first two modes of each type are reported.

For all cases in which the slit is wholly in the interior of the shell, the six-element
idealization shown in Figure 1 was used. For shells with a slit which abuts an x=constant
edge but does not lie along a y=constant edge, the element configuration shown in
Figure 2(a) was used. For shells with a slit along a y=constant edge, the configuration
shown in either Figure 2(b) or Figure 2(c) was used.

To investigate the effect of slit length, a fully clamped, spherically curved shell
(a/Rx = a/Ry = 1

2), with a centrally located slit, was chosen for study. Four different slit
length ratios, c/a=0, c/a= 1

4, c/a= 1
2 and c/a= 3

4, were considered. A brief convergence
study is given in Table 1 and the convergence indices and percentage reductions in Table 2.
(In all subsequent cases, the convergence study, although conducted, is not given: only the
convergence indices are reported, together with the frequency parameters computed using
n=7.) It may be seen that the reductions in frequency increase as the slit lengthens, as
would be expected with the decrease in stiffness resulting from the presence of a slit. The
convergence rate decreases in the presence of a slit and tends to deteriorate as the slit
lengthens. Also included in Table 1 are values calculated for the first four modes by using
the commercial finite element program ABAQUS [13] for the case of c/a= 1

2. These are
designated FE 16×16 and FE 32×32 and were calculated using 16×16 and 32×32
eight-noded, quadrilateral shell elements, giving 3525 and 15 365 degrees of freedom,

Figure 2. The element configuration for slit shells.
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T 1

Frequency parameters, V, for shells with slits of various lengths

c/a SS1 SA1 AS1 AA1 SS2 SA2 AS2 AA2

0 n=3 368·39 363·54 370·24 382·67 478·98 474·73 411·32 500·70
n=5 349·93 355·65 355·94 369·53 367·80 390·31 389·83 421·34
n=7 349·79 355·58 355·58 369·18 367·13 388·88 388·88 419·20

1
4 n=3 295·7 356·9 370·2 361·9 474·2 497·8 413·5 544·4

n=5 250·9 343·1 350·3 335·1 360·7 387·3 384·5 421·5
n=7 245·7 340·9 348·3 331·3 359·5 386·0 381·9 418·9

1
2 n=3 231·3 304·7 361·0 321·4 470·7 448·8 413·7 494·7

n=5 179·2 224·7 265·5 229·5 356·3 384·8 368·3 382·4
n=7 176·9 217·5 251·5 221·4 348·6 381·3 366·4 371·5

FE 16×16 175·1 223·1 249·8 219·3 – – – –
FE 32×32 173·9 216·1 247·1 215·1 – – – –

3
4 n=3 269 272 356 324 530 628 510 654

n=5 187 167 239 174 347 384 366 371
n=7 167 155 187 162 298 322 327 334

respectively. The agreement with the present solution using m=7 in the displacement
series, for which the number of degrees of freedom for the whole shell is only 1152, is
reasonably close.

The c/a= 1
4 case has a fairly small average reduction in frequency, with by far the largest

change occurring for the SS1 mode. For the c/a= 3
4 case, much larger reductions in

frequency occur, but it must be noted that all the modes have fairly large convergence
indices. Remembering that the Ritz solution converges from above, it may be concluded
that the true values of the frequencies could be considerably lower than those reported.
As would be expected, the behaviour of the c/a= 1

2 case falls between these two cases both
with respect to percentage reductions in frequency and convergence indices. Based upon
these results, in order to create a balance between a reasonable convergence rate and
significant change in frequency, a slit length of c/a= 1

2 was chosen for use in all of the
subsequent cases.

In order to examine the effect of different boundary conditions, a spherically curved shell
(a/Rx = a/Ry = 1

2) was again considered, both with no slit and with a centrally located slit.
This problem had already been treated for the fully clamped condition and, here, two
additional sets of boundary conditions were considered: all four edges shear diaphragm

T 2

C.I. and P.R. for shells with slits of various lengths

c/a SS1 SA1 AS1 AA1 SS2 SA2 AS2 AA1 Average

0 C.I. 0·040 0·020 0·101 0·095 0·182 0·368 0·244 0·510 0·195
1
4 C.I. 2·12 0·645 0·574 1·15 0·334 0·337 0·681 0·621 0·807

P.R. 29·8 4·13 2·05 10·3 2·08 0·741 1·79 0·072 6·37
1
2 C.I. 1·30 3·31 5·57 3·66 2·20 0·918 0·519 2·93 2·55

P.R. 49·4 38·8 29·3 40·0 5·05 1·96 5·78 11·4 22·7
3
4 C.I. 12·0 7·74 27·8 7·41 16·4 19·3 11·9 11·1 14·2

P.R. 52·3 56·4 47·4 56·1 18·8 17·2 15·9 20·3 35·6

C.I. convergence index;
P.R. percentage reduction in frequency.
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T 3

V, C.I. and P.R. for shells with various boundary conditions

B.C. Slit SS1 SA1 AS1 AA1 SS2 SA2 AS2 AA2 Average

SD. No 327·5 332·7 332·7 338·9 344·1 353·9 353·9 384·5 –
(0) (0) (0) (0) (0·003) (0·031) (0) (0·026) (0·008)

SD. Yes 124·3 211·7 250·3 220·4 316·6 342·6 334·1 341·5 –
(2·50) (3·37) (5·60) (3·59) (2·72) (0·353) (0·081) (1·44) (2·46)

P.R. 62·0 36·4 24·8 35·0 7·99 3·19 5·59 11·2 23·2

FF. No 20·376 37·788 37·780 13·651 52·028 92·931 92·921 72·736 –
(0·034) (0·042) (0·056) (0·007) (0·092) (0·185) (0·266) (0·122) (0·101)

FF. Yes 20·126 37·738 37·749 13·648 51·993 92·863 92·886 72·713 –
(0·214) (0·058) (0·058) (0·007) (0·096) (0·219) (0·250) (0·117) (0·127)

P.R. 1·23 0·106 0·082 0·022 0·067 0·073 0·038 0·032 0·206

SD., shear diaphragm; FF., fully free;
( ), convergence index; P.R., percentage reduction in frequency.

supported and all four fully free. The frequency parameters for these two cases are given
in Table 3, together wtih the convergence indices and the percentage reductions. Inspection
of Table 3 and the appropriate section of Table 2 (middle two rows) shows that, for the
shear diaphragm supported and clamped shells, the percentage reduction in frequency in
both cases is of similar order, with no clear pattern emerging other than that the lower
mode of each symmetry class is the more affected. The convergence indices are also of
similar order for the two cases and are significantly higher in the presence of a slit than
without. For the fully free case, the percentage reduction in frequency is two or more
orders of magnitude less than for the supported shells.

The effects of magnitude and type of curvature were now examined. Here, a clamped
shell was selected for study, again with the centrally located slit, with three types of
curvature: spherical (Rx /Ry =1), hyperbolic paraboloid (Rx /Ry =−1) and cylindrical
(Rx /Ry =0 or Ry /Rx =0). Each of the spherical and hyperbolic curvatures were given
magnitudes of =a/Rx == =a/Ry ==0·5. The curvatures for the two cylindrical cases were
selected as a/Rx =0·5, a/Ry =0 and a/Ry =0·5, a/Rx =0 and correspond respectively to
situations in which the slit runs parallel and perpendicular to the axis along which the
curvature exists. These cases are identified by ‘‘parallel’’ and ‘‘perpendicular’’ in Table 4,
where the results are presented. To investigate the effect of magnitude of curvature for a
particular shell, three additional cases were selected for study, these being shells with
spherical curvatures with ratios a/Rx = a/Ry =0·3, 0·1 and 0, the last corresponding to a
flat plate. The numerical results for the spherically curved shell with curvature ratio 0·5
are omitted since they are given in Tables 1 and 2. As before, the rate of convergence
deteriorates in the presence of a slit and, on average, is not significantly affected by the
magnitude or nature of the curvature, although for particular modes, significant differences
may be seen.

The effect of slit location was studied by considering a spherical (a/Rx = a/Ry =0·5),
fully clamped shell with the slit placed in different locations within the shell. The slit lies
along the line y= b, between the points x= a and x= a+ a/2, and its location may then
be defined by the two parameters a/a and b/b. (Note that here x and y are the co-ordinates
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of the whole shell.) Most of the systems studied in this section were not geometrically
symmetrical; hence the SA/AS nomenclature is no longer appropriate and, in Table 5,
where the numerical results for the first six modes of vibration are given, they are simply
numbered in order of ascending frequency. Inspection of Table 5 shows that, for most
cases, the closer the slit is to the geometric centre of the shell (a/a=1/4, b/b=1/2), the

T 5

V, C.I. and P.R. for shells with slits in various locations

Mode number
ZXXXXXXXXXXXXCXXXXXXXXXXXXV

a/a b/b 1 2 3 4 5 6 Average
1
4

1
2 V 176·9 217·5 221·4 251·5 348·6 366·4 –

(1·27) (3·32) (3·65) (5·55) (2·19) (0·535) (2·75)
P.R. 49·4 38·8 37·7 31·5 5·58 5·78 28·1

2
3 V 184·0 216·5 231·8 253·9 349·7 359·1 –

(1·43) (3·85) (3·25) (5·39) (1·56) (2·55) (3·01)
P.R. 47·4 39·1 34·8 30·8 5·28 7·66 27·5

5
6 V 214·2 221·2 307·5 322·0 347·3 356·6 –

(3·56) (4·76) (1·97) (2·01) (1·20) (2·07) (2·60)
P.R. 38·8 37·8 13·5 12·3 5·93 8·30 19·4

1 V 256·7 261·2 346·9 352·3 354·5 365·7 –
(5·17) (6·16) (0·092) (0·133) (0·302) (0·339) (2·03)

P.R. 26·6 26·5 2·44 4·04 3·98 5·96 11·6
1
3

1
2 V 181·6 220·3 223·2 253·2 348·6 361·8 –

(1·47) (3·23) (3·66) (5·48) (2·21) (1·39) (2·91)
P.R. 48·1 38·0 37·2 31·0 5·57 6·96 27·8

2
3 V 188·3 219·3 234·1 255·5 350·4 357·4 –

(1·63) (3·74) (3·23) (5·31) (1·51) (2·05) (2·91)
P.R. 46·2 38·3 34·2 30·4 5·09 8·10 27·0

5
6 V 217·0 223·7 308·2 323·9 347·9 356·7 –

(3·75) (4·53) (1·93) (2·13) (1·14) (1·93) (2·57)
P.R. 38·0 37·1 13·3 11·8 5·76 8·28 19·0

1 V 257·6 261·9 347·4 352·2 354·7 365·7 –
(5·21) (6·14) (0·101) (0·125) (0·313) (0·295) (2·03)

P.R. 26·4 26·3 2·30 4·07 3·92 5·96 11·5
1
2

1
2 V 208·8 244·5 248·3 277·3 355·8 357·4 –

(0·546) (1·40) (1·31) (0·923) (0·191) (0·406) (0·796)
P.R. 40·3 31·2 30·2 24·5 3·62 8·10 23·0

2
3 V 214·8 246·4 254·9 279·0 355·2 356·9 –

(0·633) (1·87) (0·953) (0·911) (0·710) (0·429) (0·918)
P.R. 38·6 30·7 28·3 24·0 3·79 8·22 22·3

5
6 V 240·7 253·1 318·2 339·0 351·6 356·6 –

(1·30) (2·42) (0·305) (0·802) (1·06) (0·788) (1·11)
P.R. 31·2 28·8 10·5 7·66 4·76 8·30 15·2

1 V 266·4 285·8 349·5 352·9 355·9 365·9 –
(4·80) (5·46) (0·100) (0·091) (0·278) (0·118) (1·81)

P.R. 23·8 19·6 1·71 3·88 3·60 5·91 9·75

( ), Convergence index;
P.R., percent reduction in frequency.
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higher is the percentage reduction in frequency caused by the slit. (It should be recognized
that this is for a fully clamped shell and, probably, a similar result would be seen for other
shells supported on all edges. However, if a free edge were to exist, it is expected that the
most significant reductions in frequency would occur when the slit reaches a free edge with
which it is mutually perpendicular, whereupon flapping motion could occur.)

Clearly, this has been a preliminary study and there is considerable scope for further
investigation of the vibration of shells with slits or cracks, including the important problem
of the effects of a pre-stressed middle surface.

ACKNOWLEDGMENTS

The authors wish to thank the Natural Sciences and Engineering Research Council of
Canada and the Ontario Council for Graduate Studies for the financial support which
enabled this work to be completed. They also wish to thank Dr Wanmin Han for the
provision of the finite element results given in Table 1.



1. A. W. L 1973 Vibration of Shells. NASA-SP-288. Washington, D.C.
2. M. S. Q 1992 Shock and Vibration Digest 24, 3–15. Review of shallow shell vibration

research.
3. P. G. Y and S. M. D 1993 Proceedings of the 14th Canadian Congress of Applied

Mechanics, Kingston, Canada, 131–132. The free vibration of shallow shells of circular and
annular planform with radial slits.

4. P. G. Y and S. M. D 1995 Journal of Sound and Vibration 181, 215–230. Vibration
of a class of shallow shells bounded by edges described by polynomials, part II: natural frequency
parameters for shallow shells of various different planforms.

5. J. A. C, P. G. Y and S. M. D 1995 Proceedings of the 15th Canadian
Congress of Applied Mechanics, Victoria, Canada, 270–271. Vibration of shallow shells with slits.

6. P. G. Y and S. M. D 1995 Journal of Sound and Vibration 181, 203–204. Vibration
of a class of shallow shells bounded by edges described by polynomials, part I: theoretical
approach and validation.

7. J. Y and S. M. D 1992 Journal of Sound and Vibration 159, 39–55. The flexural
vibration of rectangular plate systems approached by using artificial springs in the Rayleigh–Ritz
method.

8. A. W. L and Y. N 1984 Journal of Sound and Vibration 96, 207–218. Vibrations of
completely free shallow shells of rectangular planform.

9. C. W. L, K. M. L and L. S. O 1992 in Computational Methods in Engineering—Advances
and Applications (A. A. O. Tay and K. Y. Lam, editors) Singapore: World Scientific. Vibration
of shallow shells by Rayleigh-Ritz method.

10. A. W. L and A. S. K 1971 Journal of Sound and Vibration 16, 173–187. Curvature effects
on shallow shell vibrations.

11. K. M and O. I 1989 Japan Society of Mechanical Engineers, International
Journal, Series III 32, 187–193. Experimental study of free vibration of clamped rectangular
plates with straight narrow slits.

12. J. A. C 1995 M.E.Sc. Thesis, The University of Western Ontario, Canada. The
vibration of thin shallow shells with slits.

13. ABAQUS Listers Manual 1994 Pawtucket, RI: Hibbit, Karlsson and Sorrensen.


